pyTooling.MetaClasses

pyTooling/MetaClasses/__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
# ==================================================================================================================== #
#             _____           _ _               __  __      _         ____ _                                           #
#  _ __  _   |_   _|__   ___ | (_)_ __   __ _  |  \/  | ___| |_ __ _ / ___| | __ _ ___ ___  ___  ___                   #
# | '_ \| | | || |/ _ \ / _ \| | | '_ \ / _` | | |\/| |/ _ \ __/ _` | |   | |/ _` / __/ __|/ _ \/ __|                  #
# | |_) | |_| || | (_) | (_) | | | | | | (_| |_| |  | |  __/ || (_| | |___| | (_| \__ \__ \  __/\__ \                  #
# | .__/ \__, ||_|\___/ \___/|_|_|_| |_|\__, (_)_|  |_|\___|\__\__,_|\____|_|\__,_|___/___/\___||___/                  #
# |_|    |___/                          |___/                                                                          #
# ==================================================================================================================== #
# Authors:                                                                                                             #
#   Patrick Lehmann                                                                                                    #
#   Sven Köhler                                                                                                        #
#                                                                                                                      #
# License:                                                                                                             #
# ==================================================================================================================== #
# Copyright 2017-2024 Patrick Lehmann - Bötzingen, Germany                                                             #
#                                                                                                                      #
# Licensed under the Apache License, Version 2.0 (the "License");                                                      #
# you may not use this file except in compliance with the License.                                                     #
# You may obtain a copy of the License at                                                                              #
#                                                                                                                      #
#   http://www.apache.org/licenses/LICENSE-2.0                                                                         #
#                                                                                                                      #
# Unless required by applicable law or agreed to in writing, software                                                  #
# distributed under the License is distributed on an "AS IS" BASIS,                                                    #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.                                             #
# See the License for the specific language governing permissions and                                                  #
# limitations under the License.                                                                                       #
#                                                                                                                      #
# SPDX-License-Identifier: Apache-2.0                                                                                  #
# ==================================================================================================================== #
#
"""
The MetaClasses package implements Python meta-classes (classes to construct other classes in Python).

.. hint:: See :ref:`high-level help <META>` for explanations and usage examples.
"""
from functools  import wraps
# from inspect    import signature, Parameter
from threading  import Condition
from types      import FunctionType  #, MethodType
from typing     import Any, Tuple, List, Dict, Callable, Generator, Set, Iterator, Iterable, Union
from typing     import Type, TypeVar, Generic, _GenericAlias, ClassVar, Optional as Nullable

try:
	from pyTooling.Exceptions import ToolingException
	from pyTooling.Decorators import export
	from pyTooling.Attributes import ATTRIBUTES_MEMBER_NAME, AttributeScope
except (ImportError, ModuleNotFoundError):  # pragma: no cover
	print("[pyTooling.MetaClasses] Could not import from 'pyTooling.*'!")

	try:
		from Exceptions import ToolingException
		from Decorators import export
		from Attributes import ATTRIBUTES_MEMBER_NAME, AttributeScope
	except (ImportError, ModuleNotFoundError) as ex:  # pragma: no cover
		print("[pyTooling.MetaClasses] Could not import directly!")
		raise ex


__all__ = ["M"]

TAttr = TypeVar("TAttr")  # , bound='Attribute')
"""A type variable for :class:`~pyTooling.Attributes.Attribute`."""

TAttributeFilter = Union[TAttr, Iterable[TAttr], None]
"""A type hint for a predicate parameter that accepts either a single :class:`~pyTooling.Attributes.Attribute` or an
iterable of those."""


@export
class ExtendedTypeError(ToolingException):
	"""The exception is raised by the meta-class :class:`~pyTooling.Metaclasses.ExtendedType`."""


@export
class BaseClassWithoutSlotsError(ExtendedTypeError):
	"""
	The exception is raised when a class using ``__slots__`` inherits from at-least one base-class not using ``__slots__``.

	.. seealso::

	   * :ref:`Python data model for slots <slots>`
	   * :term:`Glossary entry __slots__ <__slots__>`
	"""


@export
class BaseClassWithNonEmptySlotsError(ExtendedTypeError):
	pass


@export
class BaseClassIsNotAMixinError(ExtendedTypeError):
	pass


@export
class DuplicateFieldInSlotsError(ExtendedTypeError):
	pass


@export
class AbstractClassError(ExtendedTypeError):
	"""
	The exception is raised, when a class contains methods marked with *abstractmethod* or *mustoverride*.

	.. seealso::

	   :func:`@abstractmethod <pyTooling.MetaClasses.abstractmethod>`
	      |rarr| Mark a method as *abstract*.
	   :func:`@mustoverride <pyTooling.MetaClasses.mustoverride>`
	      |rarr| Mark a method as *must overrride*.
	   :exc:`~MustOverrideClassError`
	      |rarr| Exception raised, if a method is marked as *must-override*.
	"""


@export
class MustOverrideClassError(AbstractClassError):
	"""
	The exception is raised, when a class contains methods marked with *must-override*.

	.. seealso::

	   :func:`@abstractmethod <pyTooling.MetaClasses.abstractmethod>`
	      |rarr| Mark a method as *abstract*.
	   :func:`@mustoverride <pyTooling.MetaClasses.mustoverride>`
	      |rarr| Mark a method as *must overrride*.
	   :exc:`~AbstractClassError`
	      |rarr| Exception raised, if a method is marked as *abstract*.
	"""


# """
# Metaclass that allows multiple dispatch of methods based on method signatures.
#
# .. seealso:
#
#    `Python Cookbook - Multiple dispatch with function annotations <https://GitHub.com/dabeaz/python-cookbook/blob/master/src/9/multiple_dispatch_with_function_annotations/example1.py?ts=2>`__
# """


M = TypeVar("M", bound=Callable)   #: A type variable for methods.


@export
def slotted(cls):
	if cls.__class__ is type:
		metacls = ExtendedType
	elif issubclass(cls.__class__, ExtendedType):
		metacls = cls.__class__
		for method in cls.__methods__:
			delattr(method, "__classobj__")
	else:
		raise ExtendedTypeError(f"Class uses an incompatible meta-class.")  # FIXME: create exception for it?

	bases = tuple(base for base in cls.__bases__ if base is not object)
	slots = cls.__dict__["__slots__"] if "__slots__" in cls.__dict__ else tuple()
	members = {
		"__qualname__": cls.__qualname__
	}
	for key, value in cls.__dict__.items():
		if key not in slots:
			members[key] = value

	return metacls(cls.__name__, bases, members, slots=True)


@export
def mixin(cls):
	if cls.__class__ is type:
		metacls = ExtendedType
	elif issubclass(cls.__class__, ExtendedType):
		metacls = cls.__class__
		for method in cls.__methods__:
			delattr(method, "__classobj__")
	else:
		raise ExtendedTypeError(f"Class uses an incompatible meta-class.")  # FIXME: create exception for it?

	bases = tuple(base for base in cls.__bases__ if base is not object)
	slots = cls.__dict__["__slots__"] if "__slots__" in cls.__dict__ else tuple()
	members = {
		"__qualname__": cls.__qualname__
	}
	for key, value in cls.__dict__.items():
		if key not in slots:
			members[key] = value

	return metacls(cls.__name__, bases, members, mixin=True)


@export
def singleton(cls):
	if cls.__class__ is type:
		metacls = ExtendedType
	elif issubclass(cls.__class__, ExtendedType):
		metacls = cls.__class__
		for method in cls.__methods__:
			delattr(method, "__classobj__")
	else:
		raise ExtendedTypeError(f"Class uses an incompatible meta-class.")  # FIXME: create exception for it?

	bases = tuple(base for base in cls.__bases__ if base is not object)
	slots = cls.__dict__["__slots__"] if "__slots__" in cls.__dict__ else tuple()
	members = {
		"__qualname__": cls.__qualname__
	}
	for key, value in cls.__dict__.items():
		if key not in slots:
			members[key] = value

	return metacls(cls.__name__, bases, members, singleton=True)


@export
def abstractmethod(method: M) -> M:
	"""
	Mark a method as *abstract* and replace the implementation with a new method raising a :exc:`NotImplementedError`.

	The original method is stored in ``<method>.__wrapped__`` and it's doc-string is copied to the replacing method. In
	additional field ``<method>.__abstract__`` is added.

	.. warning::

	   This decorator should be used in combination with meta-class :class:`~pyTooling.Metaclasses.ExtendedType`.
	   Otherwise, an abstract class itself doesn't throw a :exc:`~pyTooling.Exceptions.AbstractClassError` at
	   instantiation.

	.. admonition:: ``example.py``

	   .. code-block:: python

	      class Data(mataclass=ExtendedType):
	        @abstractmethod
	        def method(self) -> bool:
	          '''This method needs to be implemented'''

	:param method: Method that is marked as *abstract*.
	:returns:      Replacement method, which raises a :exc:`NotImplementedError`.

	.. seealso::

	   * :exc:`~pyTooling.Exceptions.AbstractClassError`
	   * :func:`~pyTooling.Metaclasses.mustoverride`
	   * :func:`~pyTooling.Metaclasses.notimplemented`
	"""
	@wraps(method)
	def func(self):
		raise NotImplementedError(f"Method '{method.__name__}' is abstract and needs to be overridden in a derived class.")

	func.__abstract__ = True
	return func


@export
def mustoverride(method: M) -> M:
	"""
	Mark a method as *must-override*.

	The returned function is the original function, but with an additional field ``<method>.____mustOverride__``, so a
	meta-class can identify a *must-override* method and raise an error. Such an error is not raised if the method is
	overridden by an inheriting class.

	A *must-override* methods can offer a partial implementation, which is called via ``super()...``.

	.. warning::

	   This decorator needs to be used in combination with meta-class :class:`~pyTooling.Metaclasses.ExtendedType`.
	   Otherwise, an abstract class itself doesn't throw a :exc:`~pyTooling.Exceptions.MustOverrideClassError` at
	   instantiation.

	.. admonition:: ``example.py``

	   .. code-block:: python

	      class Data(mataclass=ExtendedType):
	        @mustoverride
	        def method(self):
	          '''This is a very basic implementation'''

	:param method: Method that is marked as *must-override*.
	:returns:      Same method, but with additional ``<method>.__mustOverride__`` field.

	.. seealso::

	   * :exc:`~pyTooling.Exceptions.MustOverrideClassError`
	   * :func:`~pyTooling.Metaclasses.abstractmethod`
	   * :func:`~pyTooling.Metaclasses.notimplemented`
	"""
	method.__mustOverride__ = True
	return method


# @export
# def overloadable(method: M) -> M:
# 	method.__overloadable__ = True
# 	return method


# @export
# class DispatchableMethod:
# 	"""Represents a single multimethod."""
#
# 	_methods: Dict[Tuple, Callable]
# 	__name__: str
# 	__slots__ = ("_methods", "__name__")
#
# 	def __init__(self, name: str) -> None:
# 		self.__name__ = name
# 		self._methods = {}
#
# 	def __call__(self, *args: Any):
# 		"""Call a method based on type signature of the arguments."""
# 		types = tuple(type(arg) for arg in args[1:])
# 		meth = self._methods.get(types, None)
# 		if meth:
# 			return meth(*args)
# 		else:
# 			raise TypeError(f"No matching method for types {types}.")
#
# 	def __get__(self, instance, cls):  # Starting with Python 3.11+, use typing.Self as return type
# 		"""Descriptor method needed to make calls work in a class."""
# 		if instance is not None:
# 			return MethodType(self, instance)
# 		else:
# 			return self
#
# 	def register(self, method: Callable) -> None:
# 		"""Register a new method as a dispatchable."""
#
# 		# Build a signature from the method's type annotations
# 		sig = signature(method)
# 		types: List[Type] = []
#
# 		for name, parameter in sig.parameters.items():
# 			if name == "self":
# 				continue
#
# 			if parameter.annotation is Parameter.empty:
# 				raise TypeError(f"Parameter '{name}' in method '{method.__name__}' must be annotated with a type.")
#
# 			if not isinstance(parameter.annotation, type):
# 				raise TypeError(f"Parameter '{name}' in method '{method.__name__}' annotation must be a type.")
#
# 			if parameter.default is not Parameter.empty:
# 				self._methods[tuple(types)] = method
#
# 			types.append(parameter.annotation)
#
# 		self._methods[tuple(types)] = method


# @export
# class DispatchDictionary(dict):
# 	"""Special dictionary to build dispatchable methods in a metaclass."""
#
# 	def __setitem__(self, key: str, value: Any):
# 		if callable(value) and key in self:
# 			# If key already exists, it must be a dispatchable method or callable
# 			currentValue = self[key]
# 			if isinstance(currentValue, DispatchableMethod):
# 				currentValue.register(value)
# 			else:
# 				dispatchable = DispatchableMethod(key)
# 				dispatchable.register(currentValue)
# 				dispatchable.register(value)
#
# 				super().__setitem__(key, dispatchable)
# 		else:
# 			super().__setitem__(key, value)


@export
class ExtendedType(type):
	"""
	An updates meta-class to construct new classes with an extended feature set.

	.. todo:: META::ExtendedType Needs documentation.
	.. todo:: META::ExtendedType allow __dict__ and __weakref__ if slotted is enabled

	Features:

	* Store object members more efficiently in ``__slots__`` instead of ``_dict__``.
	* Allow only a single instance to be created (:term:`singleton`).
	* Define methods as :term:`abstract <abstract method>` or :term:`must-override <mustoverride method>` and prohibit
	  instantiation of :term:`abstract classes <abstract class>`.

	.. #* Allow method overloading and dispatch overloads based on argument signatures.
	"""

	# @classmethod
	# def __prepare__(cls, className, baseClasses, slots: bool = False, mixin: bool = False, singleton: bool = False):
	# 	return DispatchDictionary()

	def __new__(self, className: str, baseClasses: Tuple[type], members: Dict[str, Any],
							slots: bool = False, mixin: bool = False, singleton: bool = False) -> "ExtendedType":
		"""
		Construct a new class using this :term:`meta-class`.

		:param className:       The name of the class to construct.
		:param baseClasses:     The tuple of :term:`base-classes <base-class>` the class is derived from.
		:param members:         The dictionary of members for the constructed class.
		:param slots:           If true, store object attributes in :term:`__slots__ <slots>` instead of ``__dict__``.
		:param mixin:           If true, make the class a :term:`Mixin-Class`.
		                        If false, create slots if ``slots`` is true.
		                        If none, preserve behavior of primary base-class.
		:param singleton:       If true, make the class a :term:`Singleton`.
		:returns:               The new class.
		:raises AttributeError: If base-class has no '__slots__' attribute.
		:raises AttributeError: If slot already exists in base-class.
		"""
		# Inherit 'slots' feature from primary base-class
		if len(baseClasses) > 0:
			primaryBaseClass = baseClasses[0]
			if isinstance(primaryBaseClass, self):
				slots = primaryBaseClass.__slotted__

		# Compute slots and mixin-slots from annotated fields as well as class- and object-fields with initial values.
		classFields, objectFields = self._computeSlots(className, baseClasses, members, slots, mixin)

		# Compute abstract methods
		abstractMethods, members = self._checkForAbstractMethods(baseClasses, members)

		# Create a new class
		newClass = type.__new__(self, className, baseClasses, members)

		# Apply class fields
		for fieldName, typeAnnotation in classFields.items():
			setattr(newClass, fieldName, typeAnnotation)

		# Search in inheritance tree for abstract methods
		newClass.__abstractMethods__ = abstractMethods
		newClass.__isAbstract__ = self._wrapNewMethodIfAbstract(newClass)
		newClass.__isSingleton__ = self._wrapNewMethodIfSingleton(newClass, singleton)

		# Check for inherited class attributes
		attributes = []
		setattr(newClass, ATTRIBUTES_MEMBER_NAME, attributes)
		for base in baseClasses:
			if hasattr(base, ATTRIBUTES_MEMBER_NAME):
				pyAttr = getattr(base, ATTRIBUTES_MEMBER_NAME)
				for att in pyAttr:
					if AttributeScope.Class in att.Scope:
						attributes.append(att)
						att.__class__._classes.append(newClass)

		# Check methods for attributes
		methods, methodsWithAttributes = self._findMethods(newClass, baseClasses, members)

		# Add new fields for found methods
		newClass.__methods__ = tuple(methods)
		newClass.__methodsWithAttributes__ = tuple(methodsWithAttributes)

		# Additional methods on a class
		def HasClassAttributes(self) -> bool:
			"""
			Check if class has Attributes.

			:return: ``True``, if the class has Attributes.
			"""
			try:
				return len(self.__pyattr__) > 0
			except AttributeError:
				return False

		def HasMethodAttributes(self) -> bool:
			"""
			Check if class has any method with Attributes.

			:return: ``True``, if the class has any method with Attributes.
			"""
			try:
				return len(self.__methodsWithAttributes__) > 0
			except AttributeError:
				return False

		def GetMethodsWithAttributes(self, predicate: Nullable[TAttributeFilter[TAttr]] = None) -> Dict[Callable, Tuple["Attribute", ...]]:
			"""

			:param predicate:
			:return:
			:raises ValueError:
			:raises ValueError:
			"""
			try:
				from ..Attributes import Attribute
			except (ImportError, ModuleNotFoundError):  # pragma: no cover
				try:
					from Attributes import Attribute
				except (ImportError, ModuleNotFoundError) as ex:  # pragma: no cover
					raise ex

			if predicate is None:
				predicate = Attribute
			elif isinstance(predicate, Iterable):
				for attribute in predicate:
					if not issubclass(attribute, Attribute):
						raise ValueError(f"Parameter 'predicate' contains an element which is not a sub-class of 'Attribute'.")

				predicate = tuple(predicate)
			elif not issubclass(predicate, Attribute):
				raise ValueError(f"Parameter 'predicate' is not a sub-class of 'Attribute'.")

			methodAttributePairs = {}
			for method in newClass.__methodsWithAttributes__:
				matchingAttributes = []
				for attribute in method.__pyattr__:
					if isinstance(attribute, predicate):
						matchingAttributes.append(attribute)

				if len(matchingAttributes) > 0:
					methodAttributePairs[method] = tuple(matchingAttributes)

			return methodAttributePairs

		newClass.HasClassAttributes = classmethod(property(HasClassAttributes, doc=HasClassAttributes.__doc__))
		newClass.HasMethodAttributes = classmethod(property(HasMethodAttributes, doc=HasMethodAttributes.__doc__))
		newClass.GetMethodsWithAttributes = classmethod(GetMethodsWithAttributes)
		GetMethodsWithAttributes.__qualname__ = f"{className}.{GetMethodsWithAttributes.__name__}"
		# GetMethods(predicate) -> dict[method, list[attribute]] / generator
		# GetClassAtrributes -> list[attributes] / generator
		# MethodHasAttributes(predicate) -> bool
		# GetAttribute

		return newClass

	@classmethod
	def _findMethods(self, newClass: "ExtendedType", baseClasses: Tuple[type], members: Dict[str, Any]):
		try:
			from ..Attributes import Attribute
		except (ImportError, ModuleNotFoundError):  # pragma: no cover
			try:
				from Attributes import Attribute
			except (ImportError, ModuleNotFoundError) as ex:  # pragma: no cover
				raise ex

		# Embedded bind function due to circular dependencies.
		def bind(instance: object, func: FunctionType, methodName: Nullable[str] = None):
			if methodName is None:
				methodName = func.__name__

			boundMethod = func.__get__(instance, instance.__class__)
			setattr(instance, methodName, boundMethod)

			return boundMethod

		methods = []
		methodsWithAttributes = []
		attributeIndex = {}

		for base in baseClasses:
			if hasattr(base, "__methodsWithAttributes__"):
				methodsWithAttributes.extend(base.__methodsWithAttributes__)

		for memberName, member in members.items():
			if isinstance(member, FunctionType):
				method = newClass.__dict__[memberName]
				if hasattr(method, "__classobj__") and getattr(method, "__classobj__") is not newClass:
					raise TypeError(f"Method '{memberName}' is used by multiple classes: {method.__classobj__} and {newClass}.")
				else:
					setattr(method, "__classobj__", newClass)

				def GetAttributes(inst: Any, predicate: Nullable[Type[Attribute]] = None) -> Tuple[Attribute, ...]:
					results = []
					try:
						for attribute in inst.__pyattr__:  # type: Attribute
							if isinstance(attribute, predicate):
								results.append(attribute)
						return tuple(results)
					except AttributeError:
						return tuple()

				method.GetAttributes = bind(method, GetAttributes)
				methods.append(method)

				# print(f"  convert function: '{memberName}' to method")
				# print(f"    {member}")
				if "__pyattr__" in member.__dict__:
					attributes = member.__pyattr__           # type: List[Attribute]
					if isinstance(attributes, list) and len(attributes) > 0:
						methodsWithAttributes.append(member)
						for attribute in attributes:
							attribute._functions.remove(method)
							attribute._methods.append(method)

							# print(f"    attributes: {attribute.__class__.__name__}")
							if attribute not in attributeIndex:
								attributeIndex[attribute] = [member]
							else:
								attributeIndex[attribute].append(member)
				# else:
				# 	print(f"    But has no attributes.")
			# else:
			# 	print(f"  ??        {memberName}")
		return methods, methodsWithAttributes

	@classmethod
	def _computeSlots(self, className, baseClasses, members, slots, mixin):
		# Compute which field are listed in __slots__ and which need to be initialized in an instance or class.
		slottedFields = []
		objectFields = {}
		classFields = {}
		if slots or mixin:
			# If slots are used, all base classes must use __slots__.
			for baseClass in self._iterateBaseClasses(baseClasses):
				# Exclude object as a special case
				if baseClass is object or baseClass is Generic:
					continue

				if not hasattr(baseClass, "__slots__"):
					ex = BaseClassWithoutSlotsError(f"Base-classes '{baseClass.__name__}' doesn't use '__slots__'.")
					ex.add_note(f"All base-classes of a class using '__slots__' must use '__slots__' itself.")
					raise ex

			# FIXME: should have a check for non-empty slots on secondary base-classes too

			# Copy all field names from primary base-class' __slots__, which are later needed for error checking.
			inheritedSlottedFields = {}
			if len(baseClasses) > 0:
				for base in reversed(baseClasses[0].mro()):
					# Exclude object as a special case
					if base is object or base is Generic:
						continue

					for annotation in base.__slots__:
						inheritedSlottedFields[annotation] = base

			# When adding annotated fields to slottedFields, check if name was not used in inheritance hierarchy.
			annotations: Dict[str, Any] = members.get("__annotations__", {})
			for fieldName, typeAnnotation in annotations.items():
				if fieldName in inheritedSlottedFields:
					cls = inheritedSlottedFields[fieldName]
					raise AttributeError(f"Slot '{fieldName}' already exists in base-class '{cls.__module__}.{cls.__name__}'.")

				# If annotated field is a ClassVar, and it has an initial value
				# * copy field and initial value to classFields dictionary
				# * remove field from members
				if isinstance(typeAnnotation, _GenericAlias) and typeAnnotation.__origin__ is ClassVar and fieldName in members:
					classFields[fieldName] = members[fieldName]
					del members[fieldName]

				# If an annotated field has an initial value
				# * copy field and initial value to objectFields dictionary
				# * remove field from members
				elif fieldName in members:
					slottedFields.append(fieldName)
					objectFields[fieldName] = members[fieldName]
					del members[fieldName]
				else:
					slottedFields.append(fieldName)

			mixinSlots = self._aggregateMixinSlots(className, baseClasses)
		else:
			# When adding annotated fields to slottedFields, check if name was not used in inheritance hierarchy.
			annotations: Dict[str, Any] = members.get("__annotations__", {})
			for fieldName, typeAnnotation in annotations.items():
				# If annotated field is a ClassVar, and it has an initial value
				# * copy field and initial value to classFields dictionary
				# * remove field from members
				if isinstance(typeAnnotation, _GenericAlias) and typeAnnotation.__origin__ is ClassVar and fieldName in members:
					classFields[fieldName] = members[fieldName]
					del members[fieldName]

		# FIXME: search for fields without annotation
		if mixin:
			mixinSlots.extend(slottedFields)
			members["__slotted__"] = True
			members["__slots__"] = tuple()
			members["__isMixin__"] = True
			members["__mixinSlots__"] = tuple(mixinSlots)
		elif slots:
			slottedFields.extend(mixinSlots)
			members["__slotted__"] = True
			members["__slots__"] = tuple(slottedFields)
			members["__isMixin__"] = False
			members["__mixinSlots__"] = tuple()
		else:
			members["__slotted__"] = False
			# NO     __slots__
			members["__isMixin__"] = False
			members["__mixinSlots__"] = tuple()
		return classFields, objectFields

	@classmethod
	def _aggregateMixinSlots(self, className, baseClasses):
		mixinSlots = []
		if len(baseClasses) > 0:
			# If class has base-classes ensure only the primary inheritance path uses slots and all secondary inheritance
			# paths have an empty slots tuple. Otherwise, raise a BaseClassWithNonEmptySlotsError.
			inheritancePaths = [path for path in self._iterateBaseClassPaths(baseClasses)]
			primaryInharitancePath: Set[type] = set(inheritancePaths[0])
			for typePath in inheritancePaths[1:]:
				for t in typePath:
					if hasattr(t, "__slots__") and len(t.__slots__) != 0 and t not in primaryInharitancePath:
						ex = BaseClassWithNonEmptySlotsError(f"Base-class '{t.__name__}' has non-empty __slots__ and can't be used as a direct or indirect base-class for '{className}'.")
						ex.add_note(f"In Python, only one inheritance branch can use non-empty __slots__.")
						# ex.add_note(f"With ExtendedType, only the primary base-class can use non-empty __slots__.")
						# ex.add_note(f"Secondary base-classes should be marked as mixin-classes.")
						raise ex

			# If current class is set to be a mixin, then aggregate all mixinSlots in a list.
			#   Ensure all base-classes are either constructed
			#     * by meta-class ExtendedType, or
			#     * use no slots, or
			#     * are typing.Generic
			#   If it was constructed by ExtendedType, then ensure this class itself is a mixin-class.
			for baseClass in baseClasses:  # type: ExtendedType
				if isinstance(baseClass, _GenericAlias) and baseClass.__origin__ is Generic:
					pass
				elif baseClass.__class__ is self and baseClass.__isMixin__:
					mixinSlots.extend(baseClass.__mixinSlots__)
				elif hasattr(baseClass, "__mixinSlots__"):
					mixinSlots.extend(baseClass.__mixinSlots__)

		return mixinSlots

	@classmethod
	def _iterateBaseClasses(metacls, baseClasses: Tuple[type]) -> Generator[type, None, None]:
		if len(baseClasses) == 0:
			return

		visited:       Set[type] =            set()
		iteratorStack: List[Iterator[type]] = list()

		for baseClass in baseClasses:
			yield baseClass
			visited.add(baseClass)
			iteratorStack.append(iter(baseClass.__bases__))

			while True:
				try:
					base = next(iteratorStack[-1])  # type: type
					if base not in visited:
						yield base
						if len(base.__bases__) > 0:
							iteratorStack.append(iter(base.__bases__))
					else:
						continue

				except StopIteration:
					iteratorStack.pop()

					if len(iteratorStack) == 0:
						break

	@classmethod
	def _iterateBaseClassPaths(metacls, baseClasses: Tuple[type]) -> Generator[Tuple[type, ...], None, None]:
		"""
		Return a generator to iterate all possible inheritance paths for a given list of base-classes.

		An inheritance path is expressed as a tuple of base-classes from current base-class (left-most item) to
		:class:`object` (right-most item).

		:param baseClasses: List (tuple) of base-classes.
		:returns:           Generator to iterate all inheritance paths. An inheritance path is a tuple of types (base-classes).
		"""
		if len(baseClasses) == 0:
			return

		typeStack:   List[type] =           list()
		iteratorStack: List[Iterator[type]] = list()

		for baseClass in baseClasses:
			typeStack.append(baseClass)
			iteratorStack.append(iter(baseClass.__bases__))

			while True:
				try:
					base = next(iteratorStack[-1])  # type: type
					typeStack.append(base)
					if len(base.__bases__) == 0:
						yield tuple(typeStack)
						typeStack.pop()
					else:
						iteratorStack.append(iter(base.__bases__))

				except StopIteration:
					typeStack.pop()
					iteratorStack.pop()

					if len(typeStack) == 0:
						break

	@classmethod
	def _checkForAbstractMethods(metacls, baseClasses: Tuple[type], members: Dict[str, Any]) -> Tuple[Dict[str, Callable], Dict[str, Any]]:
		"""
		Check if the current class contains abstract methods and return a tuple of them.

		These abstract methods might be inherited from any base-class. If there are inherited abstract methods, check if
		they are now implemented (overridden) by the current class that's right now constructed.

		:param baseClasses: The tuple of :term:`base-classes <base-class>` the class is derived from.
		:param members:     The dictionary of members for the constructed class.
		:returns:           A tuple of abstract method's names.
		"""
		abstractMethods = {}
		if baseClasses:
			# Aggregate all abstract methods from all base-classes.
			for baseClass in baseClasses:
				if hasattr(baseClass, "__abstractMethods__"):
					abstractMethods.update(baseClass.__abstractMethods__)

			for base in baseClasses:
				for key, value in base.__dict__.items():
					if (key in abstractMethods and isinstance(value, FunctionType) and
						not (hasattr(value, "__abstract__") or hasattr(value, "__mustOverride__"))):
						def outer(method):
							@wraps(method)
							def inner(cls, *args: Any, **kwargs: Any):
								return method(cls, *args, **kwargs)

							return inner

						members[key] = outer(value)

		# Check if methods are marked:
		# * If so, add them to list of abstract methods
		# * If not, method is now implemented and removed from list
		for memberName, member in members.items():
			if callable(member):
				if ((hasattr(member, "__abstract__") and member.__abstract__) or
						(hasattr(member, "__mustOverride__") and member.__mustOverride__)):
					abstractMethods[memberName] = member
				elif memberName in abstractMethods:
					del abstractMethods[memberName]

		return abstractMethods, members

	@classmethod
	def _wrapNewMethodIfSingleton(metacls, newClass, singleton: bool) -> bool:
		"""
		If a class is a singleton, wrap the ``_new__`` method, so it returns a cached object, if a first object was created.

		Only the first object creation initializes the object.

		This implementation is threadsafe.

		:param newClass:  The newly constructed class for further modifications.
		:param singleton: If ``True``, the class allows only a single instance to exist.
		:returns:         ``True``, if the class is a singleton.
		"""
		if hasattr(newClass, "__isSingleton__"):
			singleton = newClass.__isSingleton__

		if singleton:
			oldnew = newClass.__new__
			if hasattr(oldnew, "__singleton_wrapper__"):
				oldnew = oldnew.__wrapped__

			oldinit = newClass.__init__
			if hasattr(oldinit, "__singleton_wrapper__"):
				oldinit = oldinit.__wrapped__

			@wraps(oldnew)
			def singleton_new(cls, *args: Any, **kwargs: Any):
				with cls.__singletonInstanceCond__:
					if cls.__singletonInstanceCache__ is None:
						obj = oldnew(cls, *args, **kwargs)
						cls.__singletonInstanceCache__ = obj
					else:
						obj = cls.__singletonInstanceCache__

				return obj

			@wraps(oldinit)
			def singleton_init(self, *args: Any, **kwargs: Any):
				cls = self.__class__
				cv = cls.__singletonInstanceCond__
				with cv:
					if cls.__singletonInstanceInit__:
						oldinit(self, *args, **kwargs)
						cls.__singletonInstanceInit__ = False
						cv.notify_all()
					elif args or kwargs:
						raise ValueError(f"A further instance of a singleton can't be reinitialized with parameters.")
					else:
						while cls.__singletonInstanceInit__:
							cv.wait()

			singleton_new.__singleton_wrapper__ = True
			singleton_init.__singleton_wrapper__ = True

			newClass.__new__ = singleton_new
			newClass.__init__ = singleton_init
			newClass.__singletonInstanceCond__ = Condition()
			newClass.__singletonInstanceInit__ = True
			newClass.__singletonInstanceCache__ = None
			return True

		return False

	@classmethod
	def _wrapNewMethodIfAbstract(metacls, newClass) -> bool:
		"""
		If the class has abstract methods, replace the ``_new__`` method, so it raises an exception.

		:param newClass:            The newly constructed class for further modifications.
		:returns:                   ``True``, if the class is abstract.
		:raises AbstractClassError: If the class is abstract and can't be instantiated.
		"""
		# Replace '__new__' by a variant to throw an error on not overridden methods
		if len(newClass.__abstractMethods__) > 0:
			oldnew = newClass.__new__
			if hasattr(oldnew, "__raises_abstract_class_error__"):
				oldnew = oldnew.__wrapped__

			@wraps(oldnew)
			def abstract_new(cls, *_, **__):
				raise AbstractClassError(f"""Class '{cls.__name__}' is abstract. The following methods: '{"', '".join(newClass.__abstractMethods__)}' need to be overridden in a derived class.""")

			abstract_new.__raises_abstract_class_error__ = True

			newClass.__new__ = abstract_new
			return True

		# Handle classes which are not abstract, especially derived classes, if not abstract anymore
		else:
			# skip intermediate 'new' function if class isn't abstract anymore
			try:
				if newClass.__new__.__raises_abstract_class_error__:
					origNew = newClass.__new__.__wrapped__

					# WORKAROUND: __new__ checks tp_new and implements different behavior
					#  Bugreport: https://github.com/python/cpython/issues/105888
					if origNew is object.__new__:
						@wraps(object.__new__)
						def wrapped_new(inst, *_, **__):
							return object.__new__(inst)

						newClass.__new__ = wrapped_new
					else:
						newClass.__new__ = origNew
				elif newClass.__new__.__isSingleton__:
					raise Exception(f"Found a singleton wrapper around an AbstractError raising method. This case is not handled yet.")
			except AttributeError as ex:
				# WORKAROUND:
				#   AttributeError.name was added in Python 3.10. For version <3.10 use a string contains operation.
				try:
					if ex.name != "__raises_abstract_class_error__":
						raise ex
				except AttributeError:
					if "__raises_abstract_class_error__" not in str(ex):
						raise ex

			return False


@export
class SlottedObject(metaclass=ExtendedType, slots=True):
	"""Classes derived from this class will store all members in ``__slots__``."""