Overview

The pyTooling.Attributes package offers the base implementation of .NET-like attributes realized with Python decorators. The annotated and declarative data is stored as instances of Attribute classes in an additional __pyattr__ field per class, method or function. The annotation syntax allows users to attach any structured data to classes, methods or functions. In many cases, a user will derive a custom attribute from Attribute and override the __init__ method, so user-defined parameters can be accepted when the attribute is constructed.

Later, classes, methods or functions can be searched for by querying the attribute class for attribute instance usage locations (see ‘Function Attributes’ example). Another option for class and method attributes is defining a new classes using pyTooling’s ExtendedType meta-class. Here the class itself offers helper methods for discovering annotated methods (see ‘Method Attributes’ example). While all user-defined (and pre-defined) attributes offer a powerful API derived from Attribute class, the full potential can only be experienced when using class declarations constructed by the pyTooling.MetaClass.ExtendedType meta-class.

Attributes can create a complex class hierarchy. This helps in finding and filtering for annotated data.

Design Goals

The main design goals are:

  • Allow meta-data annotation to Python language entities (class, method, function) as declarative syntax.

  • Find applied attributes based on attribute type (methods on the attribute).

  • Find applied attributes in a scope (find on class and on class’ methods).

  • Allow building a hierarchy of attribute classes.

  • Filter attributes based on their class hierarchy.

  • Reduce overhead to class creation time (do not impact object creation time).

Example

Function Attributes

from pyTooling.Attributes import Attribute

class Command(Attribute):
  def __init__(self, cmd: str, help: str = ""):
    pass

class Flag(Attribute):
  def __init__(self, param: str, short: str = None, long: str = None, help: str = ""):
    pass

@Command(cmd="version", help="Print version information.")
@Flag(param="verbose", short="-v", long="--verbose", help="Default handler.")
def Handler(self, args):
  pass

for function in Command.GetFunctions():
  pass

Method Attributes

from pyTooling.Attributes import Attribute
from pyTooling.MetaClasses import ExtendedType

class TestCase(Attribute):
  def __init__(self, name: str):
    pass

class Program(metaclass=ExtendedType):
   @TestCase(name="Handler routine")
   def Handler(self, args):
     pass



prog = Program()
for method, attributes in prog.GetMethodsWithAttributes(predicate=TestCase):
  pass

Use Cases

In general all classes, methods and functions can be annotated with additional meta-data. It depends on the application, framework or library to decide if annotations should be applied imperatively as regular code or declaratively as attributes via Python decorators.

With this in mind, the following use-cases and ideas can be derived:

Derived Use Cases:

  • Describe a command line argument parser (like ArgParse) in a declarative form.
    See pyTooling.Attributes.ArgParse Package and Examples

  • Mark nested classes, so later when the outer class gets instantiated, these nested classes are indexed or automatically registered.
    See CLIAbstractionCLIArgument

  • Mark methods in a class as test cases and classes as test suites, so test cases and suites are not identified based on a magic method name.
    Investigation ongoing / planned feature.

  • Mark class members as public or private and control visibility in auto-generated documentation.
    See SphinxExtensions → DocumentMemberAttribute

Predefined Attributes

pyTooling’s attributes offers the Attribute base-class to derive futher attribute classes. A derive SimpleAttribute is also offered to accept any *args, **kwargs parameters for annotation of semi-structured meta-data.

It’s recommended to derive an own hierarchy of attribute classes with well-defined parameter lists for the __init__ method. Meta-data stored in attribute should be made accessible via (readonly) properties.

In addition, an pyTooling.Attributes.ArgParse subpackage is provided, which allows users to describe complex argparse command line argument parser structures in a declarative way.

Partial inheritance diagram:

Inheritance diagram of pyTooling.Attributes.SimpleAttribute, pyTooling.Attributes.ArgParse.DefaultHandler, pyTooling.Attributes.ArgParse.CommandHandler, pyTooling.Attributes.ArgParse.CommandLineArgument

Attribute

The Attribute class implements half of the attribute’s feature set. It implements the instantiation and storage of attribute internal values as well as the search and lookup methods to find attributes. The second half is implemented in the ExtendedType meta-class. It adds attribute specific methods to each class created by that meta-class.

Any attribute is applied on a class, method or function using Python’s decorator syntax, because every attribute is actually a decorator. In addition, such a decorator accepts parameters, which are used to instantiate an attribute class and handover the parameters to that attribute instance.

Every instance of an attribute is registered at its class in a class variable. Further more, these instances are distinguished if they are applied to a class, method or function.

  • GetClasses() returns a generator to iterate all classes, this attribute was applied to.

  • GetMethods() returns a generator to iterate all methods, this attribute was applied to.

  • GetFunctions() returns a generator to iterate all functions, this attribute was applied to.

  • GetAttributes() returns a tuple of applied attributes to the given method.

Apply a class attribute

from pyTooling.Attributes import Attribute


@Attribute()
class MyClass:
  pass

Apply a method attribute

from pyTooling.Attributes import Attribute

class MyClass:
  @Attribute()
  def MyMethod(self):
    pass

Apply a function attribute

from pyTooling.Attributes import Attribute


@Attribute()
def MyFunction(param):
  pass

Find attribute usages of class attributes

from pyTooling.Attributes import Attribute

for cls in Attribute.GetClasses():
  pass

Find attribute usages of method attributes

from pyTooling.Attributes import Attribute

for method in Attribute.GetMethods():
  pass

Find attribute usages of function attributes

from pyTooling.Attributes import Attribute

for function in Attribute.GetFunctions():
  pass

Condensed definition of class Attribute

class Attribute:
   @classmethod
   def GetFunctions(cls, scope: Type = None, predicate: TAttributeFilter = None) -> Generator[TAttr, None, None]:
     ...

   @classmethod
   def GetClasses(cls, scope: Type = None, predicate: TAttributeFilter = None) -> Generator[TAttr, None, None]:
     ...

   @classmethod
   def GetMethods(cls, scope: Type = None, predicate: TAttributeFilter = None) -> Generator[TAttr, None, None]:
     ...

   @classmethod
   def GetAttributes(cls, method: MethodType, includeSubClasses: bool = True) -> Tuple['Attribute', ...]:
     ...

Planned Features

  • Allow attributes to be applied only once per kind.

  • Allow limitation of attributes to classes, methods or functions, so an attribute meant for methods can’t be applied to a function or class.

  • Allow filtering attribute with a predicate function, so values of an attribute instance can be checked too.

SimpleAttribute

The SimpleAttribute class accepts any positional and any keyword arguments as data. That data is made available via Args and KwArgs properties.

from pyTooling.Attributes import SimpleAttribute

@SimpleAttribute(kind="testsuite")
class MyClass:
  @SimpleAttribute(kind="testcase", id=1, description="Test and operator")
  def test_and(self):
    ...

  @SimpleAttribute(kind="testcase", id=2, description="Test xor operator")
  def test_xor(self):
    ...

Condensed definition of class SimpleAttribute:

class SimpleAttribute(Attribute):
   def __init__(self, *args, **kwargs) -> None:
      ...

   @readonly
   def Args(self) -> Tuple[Any, ...]:
      ...

   @readonly
   def KwArgs(self) -> Dict[str, Any]:
      ...

User-Defined Attributes

It’s recommended to derive user-defined attributes from Attribute, so the __init__ method can be overriden to accept a well defined parameter list including type hints.

The example defines an Annotation attribute, which accepts a single string parameter. When the attribute is applied, the parameter is stored in an instance. The inner field is then accessible via readonly Annotation property.

Find attribute usages of class attributes

class Application(metaclass=ExtendedType):
  @Annotation("Some annotation data")
  def AnnotatedMethod(self):
    pass

for method in Annotation.GetMethods():
  pass

Find attribute usages of class attributes

from pyTooling.Attributes import Attribute

class Annotation(Attribute):
  _annotation: str

  def __init__(self, annotation: str):
    self._annotation = annotation

  @readonly
  def Annotation(self) -> str:
    return self._annotation

Searching Attributes

Todo

Attributes:: Searching Attributes

Filtering Attributes

Methods GetClasses(), GetMethods() GetFunctions(), GetAttributes() accept an optional predicate parameter, which needs to be a subclass of Attribute.

Todo

Attributes:: Filtering Attributes

Grouping Attributes

Todo

Attributes:: Grouping Attributes

from pyTooling.Attributes import Attribute, SimpleAttribute

class GroupAttribute(Attribute):
   _id: str

   def __init__(self, id: str):
      self._id = id

   def __call__(self, entity: Entity) -> Entity:
      self._AppendAttribute(entity, SimpleAttribute(3, 4, id=self._id, name="attr1"))
      self._AppendAttribute(entity, SimpleAttribute(5, 6, id=self._id, name="attr2"))

      return entity


class Grouped(TestCase):
   def test_Group_Simple(self) -> None:
      @SimpleAttribute(1, 2, id="my", name="Class1")
      @GroupAttribute("grp")
      class MyClass1:
         pass

Implementation Details

Todo

Attributes:: Implementation details

ATTRIBUTES_MEMBER_NAME

The annotated data is stored in an additional __dict__ entry for each annotated method. By default the entry is called __pyattr__. Multiple attributes can be applied to the same method.

Consumers

This abstraction layer is used by: